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An Analysis of Combined Longitudinal and

Torsional Plastic Waves in a Thin-Walled Tubel

by

R. J. Clifton?

Abstract. This paper presents a one-dimensional rate independent
theory of combined longitudinal and torsional plastic wave propa-
gation in a thin-walled cyliﬁdrical tube. The tube material is
assumed to behave as an isotropic work-hardening, elastic-plastic
solid, for which the stress-strain curve in simple tension is a
smooth curve, concave toward the strain axis. The resulting

equations are shown to yield two wave speeds, c. and s which

satisfy the inequalities ¢, Scp s and e, s iz where c, is the
elastic shear wave velocity and <, is the elastic bar velocity.
The solution is given for combined longitudinal and torsional
step loading of' a semi—infinité tube, which is initially at rest
and either unstressed or statically pre—stresséd to arbitrary
values of normal stress and shear stress. The solution consists
of adjoining centered simple wave solutions and constant state
solutions. There are two types of simple wave solutions corres-
ponding to the two wave speeds bf and cé. The stress paths.in
stress-space associated with these two types of simple waves

form an orthogonal network.
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DA-19-020-AMC-0077(R) with Ballistic Research Laboratories,
Aberdeen Proving Ground, Maryland. Partial support was also pro-
vided by the Advanced Research Projects Agency under Contract .SD-86.
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Introduction

A test involving combined dynamic'stféss states which is attractive from
the point of view of analysis and which would not seem to present unsurmountable
experimental difficulties is that of combined longitudinal and torsional impact
of a thin-walled cylindrical tube. Such a tekt, for stress states beyond the
elastic limit of the material, could be expected to proQide useful information
regarding the dynamic plastic behavior of solids under combined stress states.
Clearly this information is of fundamental importance in the development of a
three-dimensional theory of plastic wave propagation. In order to interpret the
results of plastic wave tests, designed to study the dynamic mechanical behavior
of a material, it is necessary to first solve the associated boundary value pro-
blem for an assumed material behavior; the appropriateness of the assumptions
regarding the material behavior is then evaluated by comparison of theory and ex-
periment. Accordingly, the purpose of this paper is to pfesent an analysis of
combined longitudinal and torsional impact of a thin-walled cylindrical tube,
based on ah assumed material behavior Which, although simple, could be expected to
result in a uséful theory for interpreting experimental observations. It will be
assumed that the stress-strain curve for simple tension is éméoth, concave toward
the strain axis, and independent of the rate of strain; that the material satisfies
either the Tresca or von Mises yield conditions; that isotropic work-hardening
applies; that the elastic and plastic strain rates are separable and that the
plastic strain rate is given by the theory of the plastic potential. In other
words, the theory is the same as the usual quasi-static, elastic-plastic theory
for isotropic work-hardening (see e.g. [1]) except that the inertia terms are
included. |

The theory presented here reduces to that of von Kdrman [2] for the case

of longitudinal impact, without torsion. It is similar to the theory presented




by Bleich and Nelson [3] for the case of a uniformly distributed step load of
pressure and shear on a half sﬁace, except that Bleigh and Nelson assumed the
material to Be elastic-perfectly plastic. Rakhmatulin [4] and Cristescu [5] have
used a deformation theory of plasticity to study elastic-plastic wave propagation
for combined stress sfafes analogous to the stress states considered here. They
considered the case of edge impact of two plates for which the directions of the
velocities of the two plates are in the plane of the plates and are oblique to
the impacting‘faces; for their case the normal strain in the direction parallel
to the_impécting faces and in the plane of the plates is zero whereas in the case
considered here the normal stress in.thevcorresponding direction is assumed to

be zero. Rakhmatulin described a solutioﬁ in which first a uniaxial stress state
propagates into the body as a simple wave followed by a constant state; then a
combined stress state propagates as a wave of strong discontinuity followed by a
constant state. Cristesgu, using the same equations as Rakhmatulin and assuming
a material for which thé slope of the stress-strain curve in shear is less than
the secant modulﬁs, foqn& ?wo types of combined stress waves. He showed that a
given level of compreséive strain propagates faster in the faster of these two
combined stress waves than i£ would in a pléstic wave for a uniaxial stress state;
similarly, in the slower combined stress wave the velocity of propagation of a
given leyel of shear.strain Qas shown to be faster than in a plastic wave of pure
shear. From these results Cristeséu_concluded that combined dynamic stress is
transmitteq in a body only by cémbined»strgss waves. In contrast with the results
pf Rakhmatulin and Cristescu, the prgsent theory.prgdicts that a wave of‘strong |
discontinuity occurs only in elastic fegiqns and that a leading uniaxial plastic
wave exists for a step load of norﬁal stress and shear. |Aabibliography of studies
of one-dimensional plastic waves-involvingIQmeined stress states is given in a

survey paper by'Crvistesc.u.[s']e




1. Derivation of the Basic Equationsl

Consider a long»Slende;:thinewal}ed tube‘wi;h mean radius r as shown in
Fig. 1. Let U(x,t) denote the averége digpiécement in'the longitudinal direction
at time t ofbthe cross-section at g‘distance x from the:impact'endfof the tube.,
Since this is to be a small deformatioﬁltheory, fhe coofdinate x.pan_réfer‘to

[

either the initial position of the cross-section or its, position at time t. Let <

e(x,t) denote the longitudinal,strainjUx, (subscripts x and t denote partial
differentiation with respect to x and t respectively) and u(x,t) the longitudinal

particle velocity’Utﬁ ‘Then if U is twice continuously differentiable
€, = U (1)

Analogously, let Q(x,t) denote the average rotation about the x-axis at time t
of the cross-section at x. Let y(x,t) denote the shearing strain EQX, and v(x,t)

the tangential velocity rt. Then, neglecting changes in r, we have

Yy T Yy (2)

COI’ISGI’Ua'tiOn Of lineaI‘ momentum giveS

where o(x,t) is the force in the longitudinal direction per unit cross-sectional
area and p is the density. Conservation of angular momentum gives, again neglecting

changes in r,
(4)

where 1(x,t) is the force in the tangential direction per unit cross-sectional area.

The strain rates e, and Y, are assumed to be the.sum of an elastic part

t

and a plastic part.




Thus,
} P
€. = €0 t € (5a)
- & P
Yo T ¥ T Yy (5b)

where the superscripts e and p denote the elastic and plastic parts respectively.
In formulating the stress-strain relations it will be éssumed that o and T are
the only non-zero stresses; in particﬁlar, the hoop stress associated with the
lateral inertia of the tube\will be neglected. For an isotropic elastic solid

the elastic parts in Eqs. (5) are given by

e _ 1 .

€. T F Oy (6a)
e _ 1

Ye 5§ Tt A (6b)‘

where E is Young's modulus and p is the modulus of rigidity.

The plastic strain rates are given by

=i g_i; (7a) .
P _g_g_ (7b)

where f(o,7) is the yield function and X is a positive scalar function to be

specified subsequently. The yield condition is assumed to have the form

[

2
£(o,1) = (g-) + 12 = k2 (8)

where © is a constant, and k is the yield stress in pure shear. For 8 = V3 Eq. (8)
corresponds to the von Mises (distortion energy) yield condition and for 6 = 2
Eq. (8) corrésponds to the.Tresca (maximum shear stress) yield condition. If
isotropic work-hardening is assumed then there is a one to one correspondence

between k and the plastic work WP, The plastic work rate Wi,is given by




P _ P P
Wt = oeg + TYt (9)
’ ) p dwP
From Egs. (7), (8), and (9) and the relation W.t = Ei"k the function A is found
to satisfy
. k p
A= -—lgi— (10)
2k2 :

The function WP(k) can be determined from the stress-strain curve for a
: . { =
simple tension test or a pure shear test. For this, let ¢ = f(e) be the stress-
strain curve in simple tension. An jncrement in stress do is related to the

elastic strain increment de® and the plastic strain increment aeP by

do

£ (e)[de® + deP] (11)

Substituting ae® = do/E and deP

awP/o in Eq. (11) and regarding the slope of the
1]
stress-strain curve (i.e. f (e)) as a function of the stress o, say g(o), we

obtain

(o)[——+ —-—] (12)

For simple tension the yield condition, Eq. (8), reduces to: ¢ = 6k, Using the
latter relation in Eq. (12) we obtain the following first order differential
equation for the function WP (k).

awP
dk

1

- pn2 =
= 0%k (g(ek) E

) ‘ (13)

Eq. (13) and the initial condition Wp(cY/e) = 0, where oY-is the initial yield
stress in tension, determine the function.wp(k) corresponding to the stress-strain

curve o = f(g).
The governing equations are obtained by using Egqs. (5), (6), (7), (8), and

{10) to express €, and Ve in Egs. (1) and (2) in terms of o, T, o, and Ty» Thus,




Eqs. (1) and.(2) become

2
HOOL(E) o

trif
Q
+

t

%-T + H(k)[ct o, * 82 12 1]

respectively, where
aw?
H(k)

82x3

+ o7 Tt] = u

X

v

X

(14)

(15)

(16)

If Eq. (8) is used to express k .in Eq. (16) in terms of ¢ and 1 then Egs. (3),

(4), (14), and (15) constitute a system of four first order partial differential

equations for the four unknown functions o, 1, u and v,

2. Characteristic Properties of the Equations

The governing system of first order partial differential equations derived

in the previous section can be written in the following matrix form

L[w] = AVt +‘wa =0

where w is the vector

=,
u
A g Qe

and A and B are the following symmetric matrices.

B 0 .0 o
1 0,2 0
E’ + H('e—) 0 Hot -1
A= B =
0 0 o 0 0
0  Hot 0 =+ HB272 0

(17)

C ©




The system of equations, Eqs. (17), is a system of quasi-linear, symmetric hyper-
bolic, partial differential equétions of first order. (The theory of such equations
is given, for example, in Chapter 5 of Ref. [7]). The characteristic velocities ¢

for Eqs. (17) are the roots of the characteristic equation det. C=0 where C = (cA-B)

is the characteristic matrix. The characteristic equation is
2
L(pc?) - (M+N)(pc2) + 1 = 0 (18)

where

1,1 2 . L ye2.2-
uE +..,u‘H(0/6)é + E.He T

e
H

M= L4 Ho2r2
T
N = 2+ H(0/0)?

The roots of Eq. (18) are

1/2
_N)2 2.2,27
o2 - M N [(M 214 + 4H27202] (19)

The wave speed, taking the plus sign in.Eq. (19), will be denoted by Ce and,
taking the minus sign, by c s the subscripts f and s denote 'fast' and 'slow'

wave speeds respectively. For the elastic case (i.e. H=0) Ce becomes the elastic

bar velocity c, = (E/o)l/2

1/2

and g becomes the elastic shgar wave velocity
c, = (u/p)" ", For the case of lqngitudinai impact (i.e. 1=0) cfrcorresponds
to the velocity of longitudinal plastic waves for stresses suffiéiently small
that ce > Cy3 otherwise, Cg corresponds to theVVelocityﬁof longitudinal plastic
waves. For fhe case of torsional‘impact‘(i.e. 0=0) Cq corresponds to the velocity
of torsional plastic waves,

In ofder to study the dependence of the wave»speeds on the stress state

H

it is helpful to characterize the stress state (o,t) by the associated value




of the yield stress k, from Eq. (8), and an angle ¢ -by use of the relations

k sin ¢ (20a)

~
[H]

/6

k cos ¢ (20b)

for which the yield condition, Eq. (8), is identically satisfied. Substituting
Egs. (20) in Eq. (19) we obtain expressions for fhe wave speeds in terms of k

and ¢. These expressions can be simpiified by sﬁbstituting for H, using Eqs. (16)
and (13), and writing the slope éf the ﬁniaxial stress-strain éurve‘at o = 6k
(i.e. g(6k)) as BE where B = B(k) satisfies 0 < B < 1 and decreases monotonically
with increasing k. In fhis way we obtain the following dimensionlgss form for the

wave speeds as functions of B,and ¢.

\ L o, 1/2

c2 Lo 2L ‘
where

. 62

I =14+ (1/8-1)(cos? ¢ + P16 sin? ¢)

o= 2(1+v) + (1/8-1) 62 sin? ¢

N =1+ (1/8-1) cos? ¢

P = 4(1/8-1)2? 62 sin? ¢ cos? ¢

and v is Poisson's ratio. The wave speeds c_ and ey given by Eq. (21) are plotted

£
vs. ¢ in Fig. 2 for fixed values of 6, v, and B.

For values of v satisfying 0-< v £ 1/2 and values of 6 satisfying 3 < 62 < u,
the wave speeds‘cf‘and cSvsatisfy c, S ¢ Sce e Furthermore, for an arbitrary
fixed value of ¢, g and'cf decrease monotonically with decreasing-8. Also, for a

fixed value of B, g is monotonically decreasing and Ce is monotonically increasing

with increasing ¢ for ¢ in the interval (0, ﬁ/2).




The characteristic curves, or simply the characteristics, for Egs. (17)

are the four families of curves which satisfy

dx _
T Tt (222)
dx _ ‘

where Ce and cg are given by Eq. (19). Since the right sides of Egs. (22) depend
on o and Tt the characteristics can be constructed only after the solution o(x,t)
and t(x,t) is known. |

Associated with the characteristic matrix C, for a characteristic with wave

velocity c, is a null vector £ which satidfies
CeL =0 : (23)

There are four linearly independent null vectors corresponding to the four wave

velocities Ce and t g The null vectors for Egs. (17) which correspondvto

positive wave velocities are given. by

Hcrcf
—pc2 Hot
+ £ dx
' * e+ H(0/9)2) I ()
pc f'E
f
oc2 (% + H(0/0)2) - 1
_ f 'E _ ]
S (£-+ Hezrz;
pc I
s
2 (1 2.2y _
R e G+ %ty -1 for L = 4 ¢ (2ub)
s dt s
Hote :
s
ol
peg HGT

-t
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£

correspondihg to negative wave velocities are obtained from Eqs. (24a) and (2ub)

in which there is an arbitrary scalar factor., The null vectors £ and_2;

respectively by replacing cf.by —cfiand c, by -Cg -

Thé fﬁnctions d, T, ﬁ, and v are continuous across a characteristic, but
jumps in their defivgtives may occur in the direétion of thevnormal to the charac-
teristic, The jumﬁ [wn] in the normal derivative of the vector w must satisiy
C[wn] = 0 so that, in‘jiew of Eq; (23i,.[wn] is propqrtiqnai to the corresponding
null vector &. Since all componenfs of thé ﬁull vector are non-zero, except for
special cases in which either H = O,Ib =0, ort= 0, it follows that.in general

both longitudinal and torsional motion are associated with each wave speed.

The linear combination of Eqs. (17) given by
2:LLw] = 0 o _ (25)

where the dot denotes the Euclidean inner product, is an interior differential
equation on the characteristic associated with the null vector R(Ref; [7] pp. u2u-
427). Substituting Eqs. (24) in Eq. (25) we obtain the following incremental

relations along the characteristies.

[1/pc2 - (1/E + H(0/8)2)] [pc, dv - dtl +

\ _ . dx
Ho?[pcf du - do] = 0; F¢ =+ cg (26a)
[l/pcg - (1/u + H0?t2)] [pcS du - do] +
Hotlpc_dv - dt] = 0; S ' ! (26b)
.- -7 dt s N
. . ¢ ps o dx dx ,
The incremental relations along the characteristics It - " Cf and Ir - " ©g are

obtained by replacing ce by =y and c_ by -c_ in Eqs. (26a) and (26b) respectively.
These incremental relations élong characteristics are used in the next section to
obtain simple wave solutions. They are also useful in deriving difference equations

for the numerical solution of problems involving arbitrary initial and boundary

conditions [8].
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3. Simple Wave Solutions

There are two types of simple wave solutions of Eqs. (17); namely, slow
simple waves in which the solution is constant along the characteristics %%-ﬁ Cgo
and fast simple waves in which the solution is constant along the characteristics

dx
-—— = C

e £ Characteristics for these two types of simple waves are shown in Fig. 3.
The solution for slow simpie waves can be obtained by examining the com-

putation of the solution at point P in Fig. 3(a) for given constant values of

o, T, u, and v on the characterlstlc c . The solution at point P is computed

by 1ntegratlon of Eqs. (26) along the characterlstlcs ax . tc

dt £

Slnce O, T, U, and v are constant along c these three incremental relatlons can

3:Cgs and - Cg-

be regarded as three ordinary differential equations. Adding the two equations

£

for the characteristics + c_ and - Ce gives the following first order ordinary
differential equation for ¢ as a function of T

%% = ¥(o,T1) ' (27)

where
1/E + H(o/8)% - 1/pck

¥(o,1) = — — (28a)
HGT

or, in view of Eq. (18), equivalently

Hort :
¥(o,1) = (28b)
1/u + HB212 - 1/pcZ

It is convenient to also have expressions for ¥ involving the wave speed Cg instead

of cf. Thus |
1/p + HE?272 - l/pcg

¥Y(o,7) = - - (28c)
ot
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or

Hot
¥(o,T) = - (28d)
1/E + H(o/8)2 - 1/pc§

From Eq. (28b), ¥ vanishes on the t-axis, on the initial yield surface, and on the
o-axis in the interval oy < |o| < o where o is the stress for which the slope of
the uniaxial stress-strain curve is equal to uw. From Eq. (28a), ¥ is infinite at
points on the o-axis for whic¢h |o]| > 7. Except at these points, the function
¥(o,t) i1s continuous and continﬁous%y differentiable. Thus, a unique solution
of Eq. (27) passes throﬁgh any point (5,%),lexcept the points where ¥ is infinite.
This solution will be denoted by ¢ = o(f;.(a,%)).; The solution through a point
(6,7) with 6 # 0 cannot intersect the t-axis because ¢ = 0 is a unique solution of
Eq. (27). Likewise, the solution through a point (0,7) with T # 0 .cannot inter-
sect the o-axis at values of g satiéfying lc' > ¢ because, at such points, T=20
is a unique solution of the differential equation dt/doc = 1/¥(o,t). Therefore,
the solutioﬁ of Eq. (27) through an arbitrary point (0,T) must either intersect
the initial yield surface or intersect the o-axis in the interval oy £ lo| < G.

Solutions of Eq. (27); obtainedlby numerical integratioh,'are shown as solid
lines in Fig. 4. For these curvés a stress-strain curve representing that of
annealed commercially pure aluminum was used. The von Mises yield condition
(i.e. 8 = V3) was used. |

In Fig. 4 there are three types of curves: (a) curves that pass through
the point o = 8, T = 0; (b) curves thét intersect the o-axis in the interval
Oy < Iol < 8; (¢) curves fhat_intersect the‘initial yield sufface} Each of the
curves, or stress paths, represents a locus of stress states that occur at a
section during the passage of a slow simple wave. These stress baths are tra-
versed in the direc%ions_indicated by the arrows in Fig. 4. The slopes of the

curves in Fig. 4 satisfy the inequality

0 € =— < — . C(29)




13

and approach the upper limit as the radius of the subsequent yield surface,

2]1/2, becomes infinite.

[(o/8)? + 1
The solution for stresses as functions of x and t for a slow simple wave,

centered at the origin, is determined implicitly by the relations

o = o(t; (0,1)) (30a)
cs(o,r) = %- »(SOb)

where ¢ = o(1; (0,7)) is the stress path for the slow simple wave, and the function’
cs(c,r) is given by Eq.‘(lg). In order for this slow simple wave solution to bg
valid, howevef, the wave velocity g must decrease monotonically as the stresses
o and T increase along the curve ¢ = o(T; (0,7)). To Show that this is the case

it is convenient to regard c as a function of B and ¢ as in Eq. (21). Then

s _ Fsdpdk, Csap
dt ~ 38 dk at | 3¢ adr (31)
acs 8cs
Recall that 3 is positive and'5$—-is negative (see Fig. 2). From the condition

that the stress-strain curve is concave downward dB/dk is negative. The result
that do/dt satisfies inequality (29) insures that dk/dt and d¢/dt are positive.
Consequently, dCs/dT is negative and thensimple wave solution is valid,

The slow simple wave solution is completed by determining the velocities
u and v associated with each point on the stress path ¢ = o(t; (0,7)). For this,

use is made of the two ordinary differential equations which, in addition to

dt

Eq. (27), result from integrating Eqs. (26) along the characteristics ax . Ces

- Cges and - cg in Fig. (3a). These two equations can be written as

dv 1

@ (32a)
s

du _ 1

36" " po _ (32b)




iy

Since the right side of Eqs. (32) is a known function of ¢ and T the change in

u and v as the stress state varies along the path ¢ = o(7; (0,7)) can be obtained

by quadrature.

The change in strain with the passage of a slow simple wave can be obtained
by integration of the strain rates, Egs. (1l4) an& (15), with respect to time,
along the path o = o(1; (8,%)). Making use of Egs. (27) and (28), we can write

the equations governing the change in strain in the following form

de _ _1 (33a)
do- 02
PCs

dy . _1 (33b)
dt 2
pc
. s

from which the strains can be obtained by quadrature. An interesting consequence

of Eqs. (33) is that in slow simple wave regions

de - do
Iy T At (34)

That is, the direction of the total strain-rate vector coincides with that of the
stress-rate vector. |

The solution for‘fast simple waves is obtained in the same way as was the
solution for slow simple waves. Integration along the thrée characteristics in
Fig. 3b yields-Fhe following differential equation for the stress path for fast

simple waves

A,

do _ 1 o
&I (39)

where ¥(o,7) is the same as in Eq. (28). Comparison of Eqs. (35) and (27) reveals
that the stress paths for fast simple waves are orthogonal to the stress paths

for slow simple waves. The former are shown as dashed lines in Fig. 4. As these




stress paths are traversed from left to right the wave speed c

15

decreases mono-

tonically from e to c,. The equations determining the changes in velocities for

fast simple waves, analogous to Egs. (32), are

du
do

dv

dt

The equations for computing the changes in strains are

de
do

dy
drt

From Eqs. (37), the directions of

|-

©
0
Hh N

|-

.
_FhN

(36a)

(36b)

(37a)

(37b)

the total strain-rate vector and the stress-rate

vector also coincide for fast simple waves.

4, Solution for Step-Loading of a Semi-Infinite Tube

Solutions for a variety of step-loading problems for a semi-infinite tube

can be obtained by appropriate combinafions of slow and fast simple wave solu-

tions, constant state solutions, and waves of strong discontinuity (i.e. waves

across which jumps in stress and velocity occur). Jumps in ¢ and u can occur only

across a wave front with speed s jumps in t and v can occur only across a wave

front with speed c,. From conservation of momentum these jumps must satisfy

(o]

[]

- pco[u] for

- pcz[v] for

dx
dt

dx

dt

(38a)

(38b)
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where square brackets denote the jump in the enclosed quantity.

As an example, we consider the cése of a tube initially at rest and unstressed
which, at the end x = 0, is simultaneously subjected t§ a constant normal stress
o and a constant shear stress t_. That is, we seek a solution of Eqs; (17) in

the region 0 € X € », 0 < t < «» which satisfies the initial conditions

u(x,0) = o(x,0) = v(x,0) = t(x,0) = 0 (39)
and the boundary conditions
0(0,t) = o 0<t<w (gOa)
1(0,t) = T, 0 <!t < o (40b)
in which 00 and To are constants satisfying
_ (oo/e)2 + Tg-;‘(oY/e)z (u41)

. where UY js the initial yield stress in simple tension.

For this problem there are three tyﬁes of wave solutions as‘shown in Figs.
5(a), 5(b), and 5(c); whichAtype resulfs in a given case depends on the values
of o and T, Figs. 5(a), 5(b), and 5(c) correspond to the cases when oy and T
are such that the point (co,To) in Fig. 4 is-intersected.by solutions of Eq. (27)
of types (a), (b), and (c), respectively. Double parallel lines in Fig. 5 repre-
sent wave fronts across thch jumps in stress and Qelocity occuf. For case (a)

the stress wave behavior is as follows: o jumps to o, across the wave front pro-

Y
pagating with a speed c s O increases across the fast simple wave region to 3,
according to the von Kdrman solution, while 1 remains zero; o and T increase

across the slow simple wave region, following stress path (a) in Fig. 4, until

the stress state o = Ous T = T is reached; ¢ and 1 are constant in the constant

state region. Case (b) differs from case (a) only in that the fast simple wave
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solution terminates whep the stress o reaches the stress, say O at which the stress
path (b) in Fig. 4 intefsects thg c—axis.‘ A consfant state rggion with o = Oy
and T = 0 separates the fast and slow simple waves in Fig; 5(b). 1In case (c) o

jumps to o, (see Fig. 4) across the wave front g,='cot; T juﬁps from 0 to T, across

the wave front x = c,t; o and 1 increase across the slow simple wave region,

following stress path (c), to the stress state o = Oys T = T, The particle

velocities u and v for these three causés‘can'be obtained from the solution fof
stresses by use of Egs. (32), (36), and (38).

As a second example we‘considef a case which differs from the first example
only in that the tube is initially stféssed statically by a shear stress T which
‘exceeds the initial proportional limit of the material. In this example the final
shear stress will again be denotedvby fo so the jump in shear stress at t = 0 is
T, = Tgo The solution for this casé can be read from Figs. 6(a) and 6(b); o in-

creases and 1 decreases across the fast simple wave region, following the stress

path ab, to the stress state o = O1s T =T there is a constant state region with

1;

= = <%
o =0, T= 1T for cs(ol’Tl) <

1 rl cf(ol,Tl); o and T follow the stress path ﬁc
as they increase across the slow simple wave region to the final stress state
(oo,To)°

This second example exhibits the unexpected result that the shear stress
at any crossjsection wouid'first decrease due to the passage of a faét simple wave.
It>should be possible to carry oﬁt ekperimenfs that would either Verify or refute
éuch a prediction.

A case‘for_which the solution exhibits an even mo?e Unekpected behavior is
the case where tﬁe tube is initially_sfrgssed by a tensile streséAos and then

subjected to step-loading such that the final stress state (OO,TO) lies outside

the yield surface through the point (oS,O). That is, o, and T, satisfy

2 2 ) 2
(oo/a) o T > (cs/e) (42)
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The solution for this case is shown in Fig. 7. Unloading occurs at the wave

front x = cot where the normal stress falls to o5 1 jumps to T, across the wave

front x c,t; © and T follow the stress path cd as they increa#e across the slow
simple wave region to the final stress state (00,10). In this case the magnitude
of the jumps at the two wave fronts clearly dependé strongly on the assumption
that the subsequent yield surface for tehsion followed -by torsion can be located
by the theory of isotropic work—hardening.' However, in static tests the subsequent
yield surface ordinarily agrees better with the assumption that the yield surface
translates in the directiqn of the initial tensile stress than it does with the
aésumption of isotropic work—hardening [9]. Therefore, the theoretical predictions
in this case probably do not agree well with what would be ébserved experimentally.
So far solutions have been given for step-loading .of tubes subjected to
e€ither an initial shear stress 1 = T, or an ini?%al nofmal stress 0 = 0_. The
sqlution'fqr the case of an arbitrapy initial stress state ¢ = 09 T = T can
clearly be obtained, without difficdlty, using the techniques already established
here. |
The solutions given here are also valid for the case of combined longitu—
" dinal and torsional impact in which thé velocities, instead of the stresses, are
prescribed at x = 0, For given values of prescribed velocities (GO,GO) the cor-
responding stresses at the impaetwface (Eo;fé)'can be obtained by interpolation
from a network of contours of constant values of ug and v, as shown in Fig. 8. In
Fig, 8 a contour u, = constant represents the locus of applied stresses (oo,ro)
for which the iongitudinal velocity at the impact end is u, The contours v, = con-
stant have an analogous interpretation. These contours are obtained by first
determining several stress paths for slow simple waves as shown in Fig. 4 and then
computing the particle velocities along these paths by numerical integration of
Egqs. (32). The contours are then plotted by connecting points on the various stress

paths for which the velocities are the same.
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